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Motivation for Lee metric

Lee weight wtL(a) of a symbol a ∈ Zq, wtL(a) := min(a, q − a),

Lee weight of x = (x1, x2, . . . , xn) ∈ Zn
q, wtL(x) =

n∑
i=1

wtL(xi )

I Application:

I • phase modulation (Berlekamp’s book)

I • run length limited coding (Roth’s book, Siegel’s papers)

I Development of Theory

I • generalizing Hamming case (technical!)

I • giving contructible methods
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Affine space vs projective space

I n−dimensional affine space over Fq:

An(Fq) := {(x1, x2, . . . , xn)|xi ∈ Fq}.

I n−dimensional projective space over Fq:

Pn(Fq) :=
(
An+1(Fq)

)∗
/∼ = {[x] = (x1 : · · · : xn+1)|x ∈ An+1(Fq)},

with ∼ defined by:
∀a,b ∈ An+1(Fq), a ∼ b, if ∃λ ∈ Fq

∗
, a = λb.
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Algebraic curves

Let F be an irreducible homogeneous polynomial in
Fq[X1,X2, . . . ,Xn+1]

I A projective algebraic curve defined by F over Fq is

X := {(x1 : · · · : xn+1) ∈ Pn(Fq)|F (x1, . . . , xn+1) = 0},

I The zeros of F with coordinate xi in Fq are called rational
points.

I The zeros of F with the last coordinate 0 are called points at
infinity.
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Example

Let F (X ,Y ,Z ) = X 3 + XZ 2 + Z 3 + YZ 2 ∈ F2[X ,Y ,Z ].

I Then the plane projective curve defined by F is

X = {(x : y : z) ∈ P2(F2)|F ∗(x , y , z) = x3+xz2+z3+yz2 = 0}.

I There is only one rational point (1 : 0 : 0)

I There is only one point at infinity (1 : 0 : 0).
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Divisors

X : an algebraic curve over Fq

I Divisor on X :
D :=

∑
P∈X

nPP

with np ∈ Z all zero except finite many

I Degree of D:

deg(D) :=
∑
P∈X

nP deg(P),

where deg(P) = |Pσ| with Pσ as orbit of P under
Gal(Fq/Fq).

I D =
∑
P∈X

nPP < D ′ =
∑
P∈X

n′PP if nP ≥ n′P for all P.
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Example

X = {(x : y : z) ∈ P3(F2)|x3 + xz2 + z3 + yz2 = 0}, a projective
plane algebraic curve over F2

I points of degree 1 over F2:(x , y ∈ F2)
P∞ = (0 : 1 : 0)

I points of degree 2 over F2:( x , y ∈ F22 = {0, 1, ω, ω̄})
P1 = {(0 : ω : 1), (0 : ω̄ : 1)},
P2 = {(1 : ω : 1), (1 : ω̄ : 1)},
where ω, ω̄ are roots of y 2 + y = 1 in F22 .

I D = 2P1 + 3P2 − 7P∞: a divisor on X
I deg(D) = 2.2 + 3.2− 7.1 = 3
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Rational functions

Let X be an algebraic curve defined by F . A rational function on
X is a function f = g/h where f and g are homogeneous
polynomials of the same degree with g /∈ 〈F 〉.
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Rational divisors

Let f be a nonzero rational function on X .

I A rational divisor of f : div(f ) :=
∑
P∈X

vP(f )P.

I div(f ) =
∑

P:zero of f

vP(f )P −
∑

P:pole of f

(−vP(f ))P.

I deg(div(f )) = 0.
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Vector space associated with a divisor

Let G be a divisor on X .

I Define L(G ) := {f |f = 0 or div(f ) + G < 0}
I Dimension of L(G ) is denoted by l(G ).

I Genus of X is min{g |l(G ) ≥ deg(G )− g + 1}.
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Consequence of Riemann-Roch Theorem

Let G be a divisor on an algebraic curve X having genus g . if
deg(G ) > 2g − 2 then

l(G ) = deg(G ) + 1− g .
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Definitions

I For two divisors G and D = P1 + P2 + · · ·+ Pn s.t
supp(D) ∩ supp(G ) = ∅,
L(G ) := {f |f = 0 or div(f ) + G ≥ 0}
C (D,G ) := {(f (P1), f (P2), . . . , f (Pn))|f ∈ L(G )}, the
algebraic geometry code

I [n, k]q : linear (Lee) code of length n and dimension k over Fq

I For a genus g , Nq(g) : the largest number of rational points

I A(q) := lim sup
g→∞

Nq(g)
g , the Ihara function
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Definitions

Ci : [ni , ki ]q of Lee distance dL(Ci ) such that ni →∞.
I Rate: R = lim

i→∞
sup ki

ni
.

I Relative Lee distance: δ = lim
i→∞

sup dL(Ci )
ni s

,

with s = bq/2c.
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Asymptotic rates of AG codes

Theorem
There are families of geometric codes over FQ with rate R and
relative Hamming distance ∆ satisfying

R+ ∆ ≥ 1− 1

A(Q)
.
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Asymptotic rate of AG code

I Theorem (Tsfasman-Vladut-Zink 1981)

If Q is a square then

R+ ∆ ≥ 1− 1√
Q− 1

.

I Theorem (Drinfeld-Vladut 1983)

For any Q,
A(Q) ≤

√
Q− 1.
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Asymptotic rate of AG code

R+ ∆ ≥ 1− 1

A(Q)
.

I To get a lower bound for R, we need the exact value of A(Q)
or a lower bound for A(Q).

I If Q is a square then A(Q) =
√
Q− 1.

I For Q being prime, are there any methods to calculate A(Q)
or to lower-bound A(Q)?
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Gilbert type bound

Theorem (Astola 1984)

If q = 2s + 1, then R(δ) ≥ 1 + logq αβ
δs , where α, β are defined by

α + 2α
s∑

i=1

βi = 1,

α

s∑
i=1

iβi =
δs

2
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Construction methods

I Concatenation

I Victoria

I Victoria+descent of the base field
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Concatenation

Proposition

Let C1 and C2 be an [N,K ,D]qk and [n, k]q code with Lee
distance dL, respectively. Let Φ be a map defined by

Φ : Fqk −→ C2,

and

Φ∗ : (Fqk )N −→ C2, s.t Φ∗(v1, . . . , vN) = (Φ(v1), . . . ,Φ(vN)).

Then C = Φ∗(C1), called concatenated code, is an [Nn,Kk]q code
with Lee distance DdL.

We call C1 the outer code and C2 the inner code.
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Concatenation bound

I Proposition

The rate R and the relative Lee distance δ of the concatenated
code satisfy

R

k/n
+

δs

dL/n
≥ 1− 1

qk/2 − 1
.

I Corollary

For each prime p ≥ 7 and every integer 1 ≤ t ≤ (p + 1)/2, such
that p is congruent to t + 1 mod 2, there is a family of Lee codes
over Zp with rate R and relative Lee distance δ satisfying

R(p − 1)

p − 1− t
+
δs(p − 1)

2t
≥ 1− 1

p(p−t−1)/2 − 1
,
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Victorian construction

I Take G = rP, i.e
C (D, rP) := {(f (P1), f (P2), . . . , f (Pn))|f ∈ L(rP)}.
Then

I • f has no pole except P whose order is at most r and

I • the number of zeros of f is at most r .

I The occurence of f (Pi ) in the codeword of C (D, rP) is at
most r times.

I Hence the minimum Lee distance dL of C (D, rP) is lower
bounded by the Lee weight of a word whose entries are filled
up with the first small Lee weights.
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Victorian construction

Construct a word a = (a1, a2, . . . , an) ∈ Fn
q as follows:

I the first components ai with 0r , (±1)r , . . . , (±M)r ,

I the remaining components with (M + 1).

I Hence dL ≥ wtL(a).
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Victorian bound

I Theorem (Wu-Kuijper-Udaya 2007)

Given an algebraic curve of genus g over Fq having at least n + 1
rational points, there are codes of parameters [n − 1, r − g ] over
Fq with Lee distance

dL ≥
n2 − r 2

4r
,

for any integer r in the range (2g − 2, n).

I Corollary

For a family of curves of genus g ∼ γn, the rate R of the attached
family of codes of relative distance δ is

R ≥ −γ − 2δs +
√

4δ2s2 + 1.
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Construction using descent of the base field

Let p be an odd prime and {1, α} a basis of Fp2 over Fp.

I Then Fp2 = Fp · 1 + Fp · α ∼= Fp × Fp.

I We identify a word c ∈ (Fp2)n with a word c̃ ∈ (Fp)2n.

I We identify an [n, k]p2 code C with an an [2n, 2k]p code C̃ .

I We extend the definition of the Lee weight to Fp2 by setting
the weight of a symbol z = x + yα ∈ Fp2 (where x , y ∈ Fp) as

wtL(z) = wtL(x) + wtL(y).
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Construction using descent of the base field

The minimum Lee distance dL of the [n, k]p2 code C is
lower-bounded wtL(a) where a = (a1, a2, . . . , an) ∈ (Fp2)n is
constructed as follows:

I all symbols z ∈ Fp2 of Lee weight 0, 1, . . . ,M occur in a
exactly r times each

I some symbols of Lee weight M + 1 could occur in a, but not
more than r times each, and at least one of them less than r
times

I no symbol of Lee weight greater than M + 1 occur in a
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Lower bounds on minimum Lee distance

Theorem

Let M =


⌊

1
2 (−1 +

√
2n/r − 1)

⌋
if 1 ≤ n/r ≤ p2+4p−3

2⌊
p − 1

2 (1 +
√

2p2 + 1− 2n/r)
⌋

if p2+4p−3
2 < n/r ≤ p2.

Then there are codes of parameters [2(n − 1), 2(r − g)] over the
prime field Fp with Lee distance dL lower bounded by{

(M +1)n + (M+1)(2M2+4M+3)
3 r if n/r ≤ p2+4p−3

2

(M +1)n + 2(M+1)(2M2+4M−6pM−6p+3p2)−p3+p
6 r if n/r > p2+4p−3

2 .

Moreover , dL ≥
n − r

3

√
2n − r

r
.
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Lower bounds on rate

Corollary
Let γ = 1

p−1 , R the code rate and δ relative distance. Then

R ≥


1− 2δ − γ if 0 ≤ δ ≤ 2

5
(p ≥ 3)

1
3

(1− δ)− γ if 2
5
≤ δ ≤ 10

13
(p ≥ 5)

etc.

cM − dMδ − γ if C(M) ≤ δ ≤ C(M + 1) (p ≥ 2M + 3)

where cM = 3
2M2+4M+3

, dM = 6
(M+1)(2M2+4M+3)

, C(M) = M+1
2
− (M+1)(2M2+4M+3)

6(1+2M(M+1))
.

Moreover ,R ≥


(
−v−

√
∆

2

)1/3

+
(
−v+

√
∆

2

)1/3

+ 4
3 − γ if ∆ ≥ 0

2
√
−u
3 cos

(
1
3 cos−1(−

√
27v2

−4u3 ) + 2π
3

)
+ 4

3 − γ if ∆ < 0

with ∆ = 6912δ6 + 2112δ4 − 16δ2

3 , u = 36δ2 − 1
3 and v = (48δ2 − 2

7 ).
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Concatenation vs Victoria
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Hugues Randriam, Lin Sok, Patrick Solé, Telecom ParisTech Lower bounds on the minimum distance of long codes in the Lee metric



Motivation
Background on algebraic geometry codes

Gilbert type bound
Asymptotic rates of new constructible codes

Comparison
Conclusion

Concatenation vs Victoria+descent
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Astola vs Victoria+descent
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Thank you!
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